Τμήμα Μαθηματικών

  • Panepistimio Ioanninon
  • ΠΡΟΠΤΥΧΙΑΚΟ
    ΔΙΔΑΚΤΡΑ:
    ΔΙΔΑΚΤΡΑ:
    ΠΡΟΚΗΡΥΞΗ: Ανενεργή
    ΔΙΑΡΚΕΙΑ:
    ΠΟΛΗ:
    ΣΠΟΥΔΕΣ: Full-time
    bookmark
    ΠΛΗΡΟΦΟΡΙΕΣΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ
    • Το Τμήμα Μαθηματικών του Πανεπιστημίου Ιωαννίνων είναι το δεύτερο στη σειρά αρχαιότητας Τμήμα του Πανεπιστημίου Ιωαννίνων (έτος ίδρυσης : 1966). Από το 1989 στεγάζεται σε δικό του κτίριο στην Πανεπιστημιούπολη.

      Tα Μαθηματικά, που στο αρχικό στάδιο ανάπτυξής τους αποτελούσαν κυρίως ένα σύνολο εμπειρικών κανόνων για την εκτέλεση πράξεων, σήμερα έχουν γίνει απαραίτητα στη ζωή μας, εισχωρώντας αποφασιστικά με ταχύτατους ρυθμούς σε κάθε σύγχρονο κλάδο επιστημονικής δραστηριότητας.

      H Επιστήμη των Μαθηματικών χαρακτηρίζεται κυρίως από τη μέθοδο της απόδειξης και την αναζήτηση και περιγραφή Μαθηματικών εννοιών και νόμων απαραίτητων στην περιγραφή της σύγχρονης πραγματικότητας. Tα Μαθηματικά μελετώνται από πολλούς, χάρη στη δική τους ωραιότητα και θεωρούνται βασικό στοιχείο της ανθρώπινης καλλιέργειας. Υπάρχουν μαθηματικοί που βλέπουν την επιστήμη τους ως καλλιτέχνες και άλλοι που εργάζονται, για να προσδώσουν τέτοια νοητική ακρίβεια στο περιεχόμενο των λέξεων, ώστε να εξασφαλίζονται η απόλυτη νομοτέλεια των συλλογισμών και η αυστηρή μαθηματικοποίηση της συναγωγής των συμπερασμάτων. H μηχανιστική παραγωγή αποτελεσμάτων είναι μέρος μόνο των όσων πρέπει να μάθει ένας Μαθηματικός. ‘Oποιος γίνεται Μαθηματικός μαθαίνει πρωτίστως την εσωτερική νομοτέλεια της θεωρίας ώστε να ξέρει τόσο το πού και γιατί βαδίζει όσο και το από πού και πώς ξεκινάει.

      Ελάχιστη υποχρεωτική διάρκεια φοίτησης: οκτώ (8) εξάμηνα.

      Ταυτότητα Τμήματος – Αποφοίτων

      Τα Μαθηματικά, που στο αρχικό στάδιο ανάπτυξής τους αποτελούσαν κυρίως ένα σύνολο εμπειρικών κανόνων για την εκτέλεση πράξεων, σήμερα έχουν γίνει απαραίτητα στη ζωή μας εισχωρώντας αποφασιστικά με ταχύτατους ρυθμούς, σε κάθε σύγχρονο κλάδο επιστημονικής δραστηριότητας.

      H Επιστήμη των Μαθηματικών χαρακτηρίζεται κυρίως από τη μέθοδο της απόδειξης και την αναζήτηση και περιγραφή Μαθηματικών εννοιών και νόμων απαραίτητων στην περιγραφή της σύγχρονης πραγματικότητας. Τα Μαθηματικά μελετώνται από πολλούς χάρη στη δική τους ομορφιά και θεωρούνται βασικό στοιχείο της ανθρώπινης καλλιέργειας. Υπάρχουν μαθηματικοί που βλέπουν την επιστήμη τους ως καλλιτέχνες και άλλοι που εργάζονται για να προσδώσουν τέτοια νοητική ακρίβεια στο περιεχόμενο των λέξεων, ώστε να εξασφαλίζεται η απόλυτη νομοτέλεια των συλλογισμών και η αυστηρή μαθηματικοποίηση της συναγωγής των συμπερασμάτων. H μηχανιστική παραγωγή αποτελεσμάτων είναι μέρος μόνο των όσων πρέπει να μάθει ένας Μαθηματικός. Όποιος γίνεται Μαθηματικός μαθαίνει πρωτίστως την εσωτερική νομοτέλεια της θεωρίας, ώστε να ξέρει τόσο το που και γιατί βαδίζει όσο και το από που και πως ξεκινάει.

      Οι δύο κύριες κατευθύνσεις των μαθηματικών είναι τα Καθαρά ή Θεωρητικά Μαθηματικά και τα Εφαρμοσμένα Μαθηματικά.

      O Θεωρητικός Μαθηματικός προσβλέπει στην καλύτερη, αποδοτικότερη και αυστηρότερη θεμελίωση των μαθηματικών θεωριών, τόσο για να τις προαγάγει καθαυτές όσο και για να παραδώσει στον Εφαρμοσμένο Μαθηματικό, τη λειτουργικότητά τους πιο πρόσφορη για εφαρμογές.

      O Εφαρμοσμένος Μαθηματικός ενδιαφέρεται περισσότερο στο να εφαρμόσει την επιστήμη του, για να μελετήσει τον κόσμο που τον περιβάλλει. Προσπαθεί λοιπόν να δημιουργήσει και να εφαρμόσει προχωρημένες μαθηματικές μεθόδους, συσχετισμένες προς το επιστημονικό πρόβλημα του ενδιαφέροντός του. Όταν ο Εφαρμοσμένος Μαθηματικός βρίσκεται μπροστά σε ένα καινούργιο πρόβλημα, είτε χρησιμοποιεί από τις υπάρχουσες μαθηματικές μεθοδολογίες την κατάλληλη, είτε δημιουργεί ο ίδιος ως μαθηματικός μια κατάλληλη, είτε παρακινεί έναν σχετικά πιο εξειδικευμένο Θεωρητικό Μαθηματικό για τη δημιουργία της κατάλληλης μεθοδολογίας.

      Έτσι οι όροι «Θεωρητικά Μαθηματικά» και «Εφαρμοσμένα Μαθηματικά» διαχωρίζουν δύο διαφορετικά κίνητρα. Είναι περισσότερο σχετικοί με τα προγράμματα διδασκαλίας τόσο από Πανεπιστήμιο σε Πανεπιστήμιο όσο και από εποχή σε εποχή. Στην εποχή μας, την εποχή των ηλεκτρονικών υπολογιστών, υπάρχει πάντα τρόπος μηχανοποίησης της εσωτερικής λειτουργίας κάθε τυποποιημένης Μαθηματικής Θεωρίας, όσο θεωρητική κι αν φαίνεται αυτή.

      Στη σημερινή εποχή, οι ευκαιρίες των πτυχιούχων μαθηματικών για επαγγελματική αποκατάσταση διευρύνονται όλο και περισσότερο. Έτσι, ένας Μαθηματικός, πέρα της συνηθισμένης απασχόλησης στη δευτεροβάθμια εκπαίδευση, μπορεί σήμερα να προσφέρει τις υπηρεσίες του ως Στατιστικός, ως Επιχειρησιακός Ερευνητής, σε Κέντρα Υπολογιστών, στον O.T.E., στη Δ.E.H., στις Τράπεζες, στις Περιφέρειες, στην Τοπική αυτοδιοίκηση κ.λ.π. Επίσης, αν κάποιος το επιθυμεί, μπορεί να συνεχίσει μεταπτυχιακές σπουδές για την απόκτηση περισσότερων γνώσεων και να ακολουθήσει ακαδημαϊκή καριέρα ή να σταδιοδρομήσει στην παραγωγική διαδικασία.

    • Το Τμήμα Μαθηματικών της Σχολής Θετικών Επιστημών του Πανεπιστημίου Ιωαννίνων, βασιζόμενο στις διατάξεις των άρθρων 24 & 25 του N. 1268/82 και λαμβάνοντας υπόψη την εξέλιξη της Επιστήμης των Μαθηματικών, τα διεθνή πρότυπα αλλά και την κατάσταση η οποία έχει διαμορφωθεί στην αγορά εργασίας των πτυχιούχων μαθηματικών, στην υπ. αριθμ. 587/18-3-2015 Γενική Συνέλευση του Τμήματος, αποφάσισε την τροποποίηση του Προπτυχιακού Προγράμματος Σπουδών του.

      Έτσι, από το Ακαδημαϊκό Έτος 2015-2016 τίθεται σε ισχύ το νέο Τροποποιημένο Πρόγραμμα Σπουδών. Στο Πρόγραμμα αυτό εντάσσονται αυτόματα όλοι οι φοιτητές που εισάγονται στο Τμήμα, από το Ακαδημαϊκό Έτος 2015 – 2016 και μετέπειτα, ενώ όλοι οι ενεργοί φοιτητές του Τμήματος που έχουν εισαχθεί με τα παλαιότερα Προγράμματα Σπουδών, εντάσσονται στο Τροποποιημένο Πρόγραμμα, βάση σχετικών μεταβατικών διατάξεων, οι οποίες περιγράφονται αναλυτικά στην ενότητα 2.1.10.

      Αρχές του Προγράμματος Σπουδών

      Κύριος σκοπός είναι η σπουδή της μαθηματικής επιστήμης. Ωστόσο, στο Πρόγραμμα Σπουδών περιλαμβάνονται και γνωστικά αντικείμενα που παρέχουν τη δυνατότητα απόκτησης εξειδίκευσης πάνω σε κλάδους, οι οποίοι δύναται να παρέχουν απασχόληση πέρα από τους παραδοσιακούς χώρους εργασίας, χωρίς όμως, να υπάρχει απομάκρυνση από τον κύριο σκοπό.

      Έτσι, το πρόγραμμα μαθημάτων προβλέπει δύο κύκλους σπουδών: Τον κύκλο A, ή διαφορετικά, τον κορμό, ο οποίος περιέχει τα Υποχρεωτικά Μαθήματα και τον κύκλο B, ο οποίος περιέχει τα Μαθήματα Επιλογής. Με το δεύτερο κύκλο, παρέχεται η δυνατότητα επιλογής μαθημάτων που οδηγούν στην απόκτηση γνώσεων από τέσσερις θεμελιώδεις κλάδους – κατευθύνσεις.

      Γενικές διατάξεις

      1. Το Ακαδημαϊκό Έτος αρχίζει την 1η Σεπτεμβρίου και λήγει την 31η Αυγούστου του επόμενου ημερολογιακού έτους.
      2. Το εκπαιδευτικό έργο κάθε Ακαδημαϊκού Έτους διαρθρώνεται χρονικά σε δύο εξάμηνα. Το Χειμερινό και το Εαρινό.
      3. Κάθε εξάμηνο έχει διάρκεια τουλάχιστον 13 πλήρων εβδομάδων διδασκαλίας και 2 εβδομάδων για τις εξετάσεις.
      4. Η διακοπή του εκπαιδευτικού έργου αλλά και της εν γένει λειτουργίας ενός A.E.I., πέρα από τα προβλεπόμενα στο νόμο, είναι δυνατή με απόφαση της Συγκλήτου και μόνο για εξαιρετικές περιπτώσεις.
      5. Αν για οποιονδήποτε λόγο σε ένα μάθημα δεν συμπληρωθεί ο αριθμός των διδακτικών εβδομάδων, το μάθημα αυτό θεωρείται ως μη διδαχθέν και δεν επιτρέπεται η εξέτασή του.
      6. Το Χειμερινό εξάμηνο αρχίζει την πρώτη εβδομάδα του Οκτωβρίου και το Εαρινό εξάμηνο λήγει το δεύτερο δεκαπενθήμερο του Ιουνίου. Οι ακριβείς ημερομηνίες καθορίζονται από τη Σύγκλητο. Σε εξαιρετικές όμως περιπτώσεις, ο Υπουργός Παιδείας, Πολιτισμού και Θρησκευμάτων με πρόταση της Συγκλήτου ρυθμίζει την έναρξη και λήξη των δύο εξαμήνων εκτός των ημερομηνιών αυτών, ώστε να συμπληρωθεί ο αριθμός των εβδομάδων της παραγράφου 3.
      7. . Με τους Εσωτερικούς Κανονισμούς των A.E.I. ορίζονται τα σχετικά με τη δυνατότητα οργάνωσης και λειτουργίας θερινών μαθημάτων για ταχύρρυθμη διδασκαλία ή συμπλήρωση ύλης εξαμήνου.
      8. H βαθμολογία του φοιτητή σε κάθε μάθημα καθορίζεται βάσει της επίδοσής του στις γραπτές εξετάσεις των εξεταστικών περιόδων, από το διδάσκοντα. Οι διδάσκοντες μπορούν να οργανώσουν κατά την κρίση τους επιπλέον και προφορικές εξετάσεις ή εργασίες, εργαστηριακές ασκήσεις, κ.λ.π.
      9. Σε περίπτωση αποτυχίας σε Υποχρεωτικό Μάθημα, ο φοιτητής υποχρεούται να το επαναλάβει σε επόμενο εξάμηνο.
      10. Σε περίπτωση αποτυχίας σε Μάθημα Επιλογής, ο φοιτητής υποχρεούται ή να το επαναλάβει σε επόμενα εξάμηνα ή να το αντικαταστήσει με άλλο κατ’ επιλογή μάθημα.
      11. O φοιτητής ολοκληρώνει τις σπουδές του και λαμβάνει πτυχίο, όταν επιτύχει στα προβλεπόμενα μαθήματα και συγκεντρώσει τον απαιτούμενο αριθμό διδακτικών μονάδων.
      12. Τα σχετικά με τον τύπο των χορηγουμένων πτυχίων και με την καθομολόγηση των πτυχιούχων καθορίζονται στον Εσωτερικό Κανονισμό του A.E.I.
      13. Το Πρόγραμμα Σπουδών του Τμήματος Μαθηματικών αποτελείται από δύο κύκλους εξαμηνιαίων μαθημάτων. τον κύκλο A και τον κύκλο B. O κύκλος A που αποτελεί τον “κορμό” του προγράμματος, περιέχει 20 Υποχρεωτικά Μαθήματα τα οποία παρακολουθούν όλοι οι φοιτητές. O κύκλος B περιέχει τα Μαθήματα Επιλογής.
      14. Το μετά τον κορμό Πρόγραμμα Σπουδών προετοιμάζει το φοιτητή για ενιαίο πτυχίο και παράλληλα, στα πλαίσια ελεύθερης επιλογής μαθημάτων, του δίνει τη δυνατότητα, εφ’ όσον το επιθυμεί, να ειδικευτεί πιο πολύ σε κλάδους των Μαθηματικών όπως: η Μαθηματική Ανάλυση, η Άλγεβρα, η Γεωμετρία, η Στατιστική & Επιχειρησιακή Έρευνα, η Πληροφορική, τα Υπολογιστικά Μαθηματικά και η Μηχανική. H ειδίκευση/κατεύθυνση, δεν αναγράφεται στο πτυχίο αλλά σε ξεχωριστό Πιστοποιητικό που εκδίδεται μαζί με το πτυχίο και που φέρει τον τίτλο «Βεβαίωση Κατεύθυνσης».
      15. Kατά την κατανομή μαθημάτων, είναι δυνατός ο περιορισμός του αριθμού των φοιτητών που μπορούν να δηλώσουν Μαθήματα Επιλογής, που χαρακτηρίζονται ως εργαστηριακά ή ως μαθήματα υποχρεωτικής παρακολούθησης. Σε αυτήν την περίπτωση, οι ενδιαφερόμενοι φοιτητές πρέπει να δηλώνουν το ενδιαφέρον τους σε προκαθορισμένες ημερομηνίες, πριν την έναρξη των δηλώσεων. Η αιτιολογημένη επιλογή του διδάσκοντα, η οποία θα ανακοινώνεται πριν την έναρξη των δηλώσεων μαθημάτων, μπορεί να βασίζεται στα ακόλουθα κριτήρια:
        • Παρακολούθηση συναφών μαθημάτων
        • Επίδοση
        • Σειρά εκδήλωσης ενδιαφέροντος
        • Εξάμηνο φοίτησης
    ΕΚΔΗΛΩΣΗ ΕΝΔΙΑΦΕΡΟΝΤΟΣ
    ΕΚΔΗΛΩΣΗ ΕΝΔΙΑΦΕΡΟΝΤΟΣ
    ΣΧΟΛΙΑΣΤΕ

    ΕΠΙΚΟΙΝΩΝΗΣΤΕ ΜΕ ΤΗΝ ΓΡΑΜΜΑΤΕΙΑ

      Αφήστε μια απάντηση

      Η ηλ. διεύθυνση σας δεν δημοσιεύεται. Τα υποχρεωτικά πεδία σημειώνονται με *

      ΚΑΤΗΓΟΡΙΕΣ
      ΚΑΤΗΓΟΡΙΕΣ
      ΠΡΟΠΤΥΧΙΑΚΑΜΕΤΑΠΤΥΧΙΑΚΑΣΕΜΙΝΑΡΙΑ
      ΠΡΟΠΤΥΧΙΑΚΑΜΕΤΑΠΤΥΧΙΑΚΑΣΕΜΙΝΑΡΙΑ
      ΠΡΟΠΤΥΧΙΑΚΑΜΕΤΑΠΤΥΧΙΑΚΑΣΕΜΙΝΑΡΙΑ
      ΆΡΘΡΑ
      Share on Facebook Tweet Pin it Share on LinkedIn Send email