Site icon Spoudase.gr

Τμήμα Μαθηματικών

Το Τμήμα Μαθηματικών του Πανεπιστημίου Ιωαννίνων είναι το δεύτερο στη σειρά αρχαιότητας Τμήμα του Πανεπιστημίου Ιωαννίνων (έτος ίδρυσης : 1966). Από το 1989 στεγάζεται σε δικό του κτίριο στην Πανεπιστημιούπολη.

Tα Μαθηματικά, που στο αρχικό στάδιο ανάπτυξής τους αποτελούσαν κυρίως ένα σύνολο εμπειρικών κανόνων για την εκτέλεση πράξεων, σήμερα έχουν γίνει απαραίτητα στη ζωή μας, εισχωρώντας αποφασιστικά με ταχύτατους ρυθμούς σε κάθε σύγχρονο κλάδο επιστημονικής δραστηριότητας.

H Επιστήμη των Μαθηματικών χαρακτηρίζεται κυρίως από τη μέθοδο της απόδειξης και την αναζήτηση και περιγραφή Μαθηματικών εννοιών και νόμων απαραίτητων στην περιγραφή της σύγχρονης πραγματικότητας. Tα Μαθηματικά μελετώνται από πολλούς, χάρη στη δική τους ωραιότητα και θεωρούνται βασικό στοιχείο της ανθρώπινης καλλιέργειας. Υπάρχουν μαθηματικοί που βλέπουν την επιστήμη τους ως καλλιτέχνες και άλλοι που εργάζονται, για να προσδώσουν τέτοια νοητική ακρίβεια στο περιεχόμενο των λέξεων, ώστε να εξασφαλίζονται η απόλυτη νομοτέλεια των συλλογισμών και η αυστηρή μαθηματικοποίηση της συναγωγής των συμπερασμάτων. H μηχανιστική παραγωγή αποτελεσμάτων είναι μέρος μόνο των όσων πρέπει να μάθει ένας Μαθηματικός. ‘Oποιος γίνεται Μαθηματικός μαθαίνει πρωτίστως την εσωτερική νομοτέλεια της θεωρίας ώστε να ξέρει τόσο το πού και γιατί βαδίζει όσο και το από πού και πώς ξεκινάει.

Ελάχιστη υποχρεωτική διάρκεια φοίτησης: οκτώ (8) εξάμηνα.

Ταυτότητα Τμήματος – Αποφοίτων

Τα Μαθηματικά, που στο αρχικό στάδιο ανάπτυξής τους αποτελούσαν κυρίως ένα σύνολο εμπειρικών κανόνων για την εκτέλεση πράξεων, σήμερα έχουν γίνει απαραίτητα στη ζωή μας εισχωρώντας αποφασιστικά με ταχύτατους ρυθμούς, σε κάθε σύγχρονο κλάδο επιστημονικής δραστηριότητας.

H Επιστήμη των Μαθηματικών χαρακτηρίζεται κυρίως από τη μέθοδο της απόδειξης και την αναζήτηση και περιγραφή Μαθηματικών εννοιών και νόμων απαραίτητων στην περιγραφή της σύγχρονης πραγματικότητας. Τα Μαθηματικά μελετώνται από πολλούς χάρη στη δική τους ομορφιά και θεωρούνται βασικό στοιχείο της ανθρώπινης καλλιέργειας. Υπάρχουν μαθηματικοί που βλέπουν την επιστήμη τους ως καλλιτέχνες και άλλοι που εργάζονται για να προσδώσουν τέτοια νοητική ακρίβεια στο περιεχόμενο των λέξεων, ώστε να εξασφαλίζεται η απόλυτη νομοτέλεια των συλλογισμών και η αυστηρή μαθηματικοποίηση της συναγωγής των συμπερασμάτων. H μηχανιστική παραγωγή αποτελεσμάτων είναι μέρος μόνο των όσων πρέπει να μάθει ένας Μαθηματικός. Όποιος γίνεται Μαθηματικός μαθαίνει πρωτίστως την εσωτερική νομοτέλεια της θεωρίας, ώστε να ξέρει τόσο το που και γιατί βαδίζει όσο και το από που και πως ξεκινάει.

Οι δύο κύριες κατευθύνσεις των μαθηματικών είναι τα Καθαρά ή Θεωρητικά Μαθηματικά και τα Εφαρμοσμένα Μαθηματικά.

O Θεωρητικός Μαθηματικός προσβλέπει στην καλύτερη, αποδοτικότερη και αυστηρότερη θεμελίωση των μαθηματικών θεωριών, τόσο για να τις προαγάγει καθαυτές όσο και για να παραδώσει στον Εφαρμοσμένο Μαθηματικό, τη λειτουργικότητά τους πιο πρόσφορη για εφαρμογές.

O Εφαρμοσμένος Μαθηματικός ενδιαφέρεται περισσότερο στο να εφαρμόσει την επιστήμη του, για να μελετήσει τον κόσμο που τον περιβάλλει. Προσπαθεί λοιπόν να δημιουργήσει και να εφαρμόσει προχωρημένες μαθηματικές μεθόδους, συσχετισμένες προς το επιστημονικό πρόβλημα του ενδιαφέροντός του. Όταν ο Εφαρμοσμένος Μαθηματικός βρίσκεται μπροστά σε ένα καινούργιο πρόβλημα, είτε χρησιμοποιεί από τις υπάρχουσες μαθηματικές μεθοδολογίες την κατάλληλη, είτε δημιουργεί ο ίδιος ως μαθηματικός μια κατάλληλη, είτε παρακινεί έναν σχετικά πιο εξειδικευμένο Θεωρητικό Μαθηματικό για τη δημιουργία της κατάλληλης μεθοδολογίας.

Έτσι οι όροι «Θεωρητικά Μαθηματικά» και «Εφαρμοσμένα Μαθηματικά» διαχωρίζουν δύο διαφορετικά κίνητρα. Είναι περισσότερο σχετικοί με τα προγράμματα διδασκαλίας τόσο από Πανεπιστήμιο σε Πανεπιστήμιο όσο και από εποχή σε εποχή. Στην εποχή μας, την εποχή των ηλεκτρονικών υπολογιστών, υπάρχει πάντα τρόπος μηχανοποίησης της εσωτερικής λειτουργίας κάθε τυποποιημένης Μαθηματικής Θεωρίας, όσο θεωρητική κι αν φαίνεται αυτή.

Στη σημερινή εποχή, οι ευκαιρίες των πτυχιούχων μαθηματικών για επαγγελματική αποκατάσταση διευρύνονται όλο και περισσότερο. Έτσι, ένας Μαθηματικός, πέρα της συνηθισμένης απασχόλησης στη δευτεροβάθμια εκπαίδευση, μπορεί σήμερα να προσφέρει τις υπηρεσίες του ως Στατιστικός, ως Επιχειρησιακός Ερευνητής, σε Κέντρα Υπολογιστών, στον O.T.E., στη Δ.E.H., στις Τράπεζες, στις Περιφέρειες, στην Τοπική αυτοδιοίκηση κ.λ.π. Επίσης, αν κάποιος το επιθυμεί, μπορεί να συνεχίσει μεταπτυχιακές σπουδές για την απόκτηση περισσότερων γνώσεων και να ακολουθήσει ακαδημαϊκή καριέρα ή να σταδιοδρομήσει στην παραγωγική διαδικασία.

Exit mobile version